UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

INSTITUTO DE FÍSICA

RAFAEL DE ARAUJO NUNES

LEVANTAMENTO DOS NÍVEIS DE REFERÊNCIA EM DIAGNÓSTICO PARA MEDICINA NUCLEAR NO BRASIL

Rio de Janeiro

2023

RAFAEL DE ARAUJO NUNES

LEVANTAMENTO DOS NÍVEIS DE REFERÊNCIA EM DIAGNÓSTICO PARA MEDICINA NUCLEAR NO BRASIL

Trabalho de conclusão de curso de graduação apresentado ao Instituto de Física da Universidade Federal do Rio de Janeiro como parte dos requisitos para obtenção do grau de Bacharel em Física Médica pela Universidade Federal do Rio de Janeiro.

Física Médica – Medicina Nuclear

Orientadores: Fernando de Fernandes

Co-orientador: Cláudio Tinoco Mesquita

Rio de Janeiro

2023

Rafael de Araujo Nunes

LEVANTAMENTO DOS NÍVEIS DE REFERÊNCIA EM DIAGNÓSTICO PARA MEDICINA NUCLEAR NO BRASIL

Trabalho de conclusão de curso de graduação apresentado ao Instituto de Física da Universidade Federal do Rio de Janeiro como parte dos requisitos para obtenção do grau de Bacharel em Física Médica pela Universidade Federal do Rio de Janeiro.

Aprovado em: _____ de _____ de _____

BANCA EXAMINADORA:

Dr. Claudio Tinoco Mesquita Universidade Federal Fluminense

Me. Fernando de Amorim Fernandes Universidade Federal Fluminense

Dra. Josilene Cerqueira Santos Universidade Federal do Rio de Janeiro

Esp. Ryenne Bañolas Bueno Universidade Federal Fluminense

Rio de Janeiro

2023

"O temor do Senhor é o princípio da sabedoria"

Salmos 111:10

AGRADECIMENTOS

Agradeço primeiramente a Deus, dono de toda ciência e sabedoria, que me guardou e me permitiu superar todas as dificuldades que enfrentei até aqui.

Agradeço a minha esposa Anne por todo amor, carinho, ajuda, incentivo e paciência. Por ter acreditado em mim quando nem eu mesmo acreditava. Você é e sempre será o amor da minha vida!

Agradeço aos meus pais (Maria Aparecida e Iraçú), minha irmã (Raquel) e meus tios (João e Antônio) por todo amor e cuidado que tiveram comigo e por sempre me incentivarem.

Agradeço aos meus sogros (Rosemeri e Claudio) e minha cunhada (Giovanna) por todo acolhimento e ajuda.

Agradeço ao meu orientador acadêmico Carlos Domingues Zarro por ter acreditado e me incentivado durante a minha graduação. Seu investimento em mim foi essencial para chegar até aqui.

Agradeço a equipe do Setor de Medicina Nuclear do Hospital Universitário Antônio Pedro (HUAP) pelo acolhimento, em especial a toda equipe médica, técnica e de enfermagem por toda ajuda no tempo em que estive no setor.

Agradeço ao Fernando de Amorim Fernandes, Claúdio Tinoco Mesquita e Ryenne Bañolas Bueno por terem me recebido no HUAP e por todo treinamento para me tornar um físico médico.

Agradeço a Comissão Nacional de Energia Nuclear (CNEN) e a Sociedade Brasileira de Medicina Nuclear (SBMN) por terem abraçado e incentivado este projeto.

RESUMO

A medicina nuclear é uma especialidade médica que, por meio da administração de radiofármacos, tem por objetivo a realização de terapias ou diagnósticos utilizando imagens funcionais. Como trata-se de uma área que utiliza materiais radioativos, a otimização da prática torna-se necessária. Os Níveis de Referência em Diagnóstico (NRD) permitem que a prática da medicina nuclear seja otimizada à medida que é gerado um conjunto de atividades de referência onde cada clínica ou hospital pode utilizá-lo como parâmetro para realizar sua autoavaliação. O presente estudo teve como objetivo a determinação de Níveis de Referência em Diagnóstico para o Brasil a fim de otimizar a prática da proteção radiológica em serviços de medicina nuclear. Além disso, foi feita uma comparação com o último levantamento de NRD realizado em 2015 e com os levantamentos internacionais. Para a realização deste estudo, foi elaborado um formulário solicitando as atividades administradas para uma gama de procedimentos em medicina nuclear, bem como o modelo e o ano de fabricação dos equipamentos que os serviços utilizam para tais procedimentos. Os formulários foram enviados através de um e-mail institucional da Comissão Nacional de Energia Nuclear (CNEN). Os dados levantados estabeleceram os NRD nacionais. Em relação aos NRD regionais, não houve diferenças significativas entre as regiões do Brasil. Constatou-se, também, que a tecnologia não foi um fator relevante para a redução das atividades administradas nos procedimentos desde o último levantamento.

Palavras-chave: Medicina Nuclear; Níveis de Referência em Diagnóstico; Proteção Radiológica.

ABSTRACT

Nuclear medicine is a medical specialty that, through the administration of radiopharmaceuticals, aims to carry out therapies or diagnoses using functional images. As it is a science that uses radioactive materials, optimization of the practice becomes necessary. The Diagnostic Reference Levels (DRL) allow the nuclear medicine practice optimizing as a set of reference activities is generated that each clinic or hospital can use as a parameter to carry out its self-assessment. The present study aimed to determine Reference Levels in Diagnosis for Brazil to optimize the practice of radiological protection in nuclear medicine services. In addition, was made a comparison with the last DRL survey carried out in 2015 and with international surveys. In order to execute this study, a form was prepared requesting the activities administered for a range of procedures in nuclear medicine, as well as the model and year of manufacture of the equipment that the services use for such procedures. The forms were sent via a constitutional email from the Comissão Nacional de Energia Nuclear (CNEN). The data collected established the national DRLs. Regarding the regional DRL, there were no significant differences between the regions of Brazil. It was also found that technology was not a relevant factor for the reduction of activities administered in procedures since the last survey.

Keywords: Nuclear medicine; Diagnostic Reference Levels; Radiological Protection.

SUMÁRIO

1	IN	TRODUÇÃO	6
	1.1	Objetivo Geral	8
	1.2	Objetivos Específicos	8
2	FL	INDAMENTOS TEÓRICOS	9
	2.1	Medicina Nuclear	9
	2.2	Radiofármacos	9
	2.3	Desintegração ou Decaimento Nuclear	. 10
	2.4	Decaimento alfa (α)	. 11
	2.5	Decaimento Beta ($meta$)	. 12
	2.6	Decaimento Gama	. 13
	2.7	Meia Vida Física <i>t</i> 12 <i>f</i>	. 13
	2.8	Meia Vida Biológica <i>t12bio</i>	. 14
	2.9	Meia Vida Efetiva <i>t12efetiva</i>	. 14
	2.10	Atividade <i>A</i>	. 15
	2.11	Interação dos fótons gama com a matéria	. 16
	2.12	Aniquilação de Pares	. 18
	2.13	Cintilação	. 18
	2.14	SPECT	. 19
	2.1	14.1 Colimadores	. 20
	2.15	Tomografia de Emissão de Pósitrons	. 25
3	Ní	veis de Referência em Diagnóstico	. 27
4	MA	ATERIAIS E MÉTODOS	. 29
	4.1	Análise estatística	. 30
5	RE	ESULTADOS E DISCUSSÃO	. 31
6	СС	DNCLUSÃO	. 64

LISTA DE FIGURAS

Figura 1 - Relação de alguns radiofármacos utilizados na medicina nuclear e seus
respectivos sítios de concentrações 10
Figura 2 - Meia vida física, biológica e efetiva de alguns radionuclídeos importantes
na medicina nuclear em dias15
Figura 3 - Par elétron-pósitron em repouso e próximos e, após isso, o processo de
aniquilação propriamente dito, onde dois fótons de mesma energia (hv_1= hv_2)
são emitidos em sentidos diametralmente opostos
Figura 4 - Esquema de Cintilação de um cristal de Nal dopado com Tl 19
Figura 5 - Estrutura básica de uma gama câmara
Figura 6 - Representação de um colimador 20
Figura 7 - Processo de emissão de fótons pelo órgão ou estrutura em que o
radiofármaco está armazenado e o processo de cintilação que ocorre na interação
do fóton com os cristais de Nal dopados com Tl 21
Figura 8 - Processo de formação da imagem desde a emissão do fóton gama até o
efeito cascata nas fotomultiplicadoras 22
Figura 9 - Processo de aquisição de imagem desde a emissão do fóton até o
processo de amplificação do sinal 23
Figura 10 - Exemplo de Tc99m, que possui o fotopico em 140 KeV. Como a janela
de energia é de ± 20%, o analisador de pulso só contabiliza pulsos referentes a
energias entre 112 KeV e 168 KeV24
Figura 11 - Exemplo de uma imagem bidimensional de um exame de SPECT 24
Figura 12 - Frações do cristal conectados a fotomultiplicadora
Figura 13 - Um evento de sensibilização por fótons diametralmente opostos é aceito
após o processamento pelos analisadores de altura de pulso, discriminadores de
tempo e circuitos de coincidência 27
Figura 14 - Exemplo de um caso de sensibilização que é rejeitado pelos
analisadores de altura de pulso, discriminadores de tempo e circuitos de
coincidência. Pode ser que o fóton sofra alguma interação no percurso até um dos
detectores, fazendo com que haja perda 27

LISTA DE TABELAS

Tabela 1 - Média do ano de fabricação dos equipamentos de medicina nuclear
participantes da pesquisa
Tabela 2 - Análise estatística das atividades administradas nos pacientes para os
procedimentos de PET. Dados em MiliCurie (mCi)
Tabela 3 - Análise estatística das atividades administradas nos pacientes para os
procedimentos de SPECT com 99mTc. Dados em MiliCurie (mCi)
Tabela 4 – Análise estatística das atividades administradas nos pacientes para os
procedimentos com I-123 e I-131. Dados em MiliCurie (mCi) 42
Tabela 5 – Análise estatística das atividades administradas nos pacientes para os
procedimentos com outros radiofármacos. Dados em MiliCurie (mCi) 43
Tabela 6 – Distribuição estatísticas dos cinco principiais procedimentos realizados
em medicina nuclear no Brasil 45
Tabela 7 - Dados estatísticos para o exame de Cintilografia de Perfusão Miocárdica
na fase de repouso (protocolo de 1 dia). Dados em MiliCurie (mCi) 47
Tabela 8 - Dados estatísticos para o exame de Cintilografia de Perfusão Miocárdica
na fase de estresse (protocolo de 1 dia). Dados em MiliCurie (mCi) 47
Tabela 9 - Dados estatísticos para o exame de Cintilografia de Perfusão Miocárdica
na fase de repouso (protocolo de 2 dias). Dados em MiliCurie (mCi) 48
Tabela 10 - Dados estatísticos para o exame de Cintilografia de Perfusão
Miocárdica na fase de estresse (protocolo de 2 dias). Dados em MiliCurie (mCi).
Tabela 11 - Dados estatísticos para o exame de Cintilografia Óssea. Dados em
MiliCurie (mCi)
Tabela 12 - Dados estatísticos para o exame de Cintilografia renal dinâmica. Dados
em MiliCurie (mCi)
Tabela 13 - Dados estatísticos para o exame de Cintilografia renal estática. Dados
em MiliCurie (mCi)
Tabela 14 - Dados estatísticos para o exame de PET Oncológico 50
Tabela 15 - Resultados do teste Kruskal- Wallis para comparação dos
procedimentos por regiões51

Tabela 16 - Teste de DSCF para Cintilografia de perfusão miocárdica protocolo 1
dia repouso 99mTc MIBI
Tabela 17 - Teste de DSCF para Cintilografia de perfusão miocárdica - protocolo 2
dias repouso 99mTc MIBI 53
Tabela 18 - Teste de DSCF para Cintilografia de perfusão miocárdica - protocolo 2
dias estresse 99mTc MIBI 53
Tabela 19 - Teste de DSCF para Cintilografia renal dinâmica 99mTc DTPA 54
Tabela 20 - Teste de DSCF para cintilografia renal estática 99mTc-DMSA 54
Tabela 21 - Comparação entre os NRD nacional em 2022 e 2015 com o cenário
internacional58
Tabela 22 - Dados estatísticos dos exames de cintilografia de perfusão miocárdica
para as gamas câmaras convencionais 60
Tabela 23 - Dados estatísticos dos procedimentos de cintilografia de perfusão do
miocárdio para gamas câmaras dedicadas61
Tabela 24 - Resultados do teste de normalidade de Shapiro-Wilk 62
Tabela 25 - Resultados do teste de Mann-Whitney

LISTA DE GRÁFICOS

Gráfico 1 - Espectro de energia do decaimento Beta no Bismuto 210 12
Gráfico 2 - Regiões de probabilidades de interação dos fótons gama com a matéria
de acordo com a energia do fóton incidente e do número atômico do material do
alvo17
Gráfico 3 - Distribuição de SMN participantes do trabalho distribuídos por regiões.
Gráfico 4 - Distribuição dos Serviços em medicina nuclear por regiões do Brasil. O
resultado encontra-se em porcentagem
Gráfico 5 - Correlação dos serviços de medicina nuclear com licença de operação
vigentes e dos serviços participantes por macrorregião
Gráfico 6 - Adesão dos serviços de medicina nuclear de acordo com as 5
macrorregiões do país no estudo de 2015 32
Gráfico 7 - Teste de DSCF- Cintilografia de Renal DMSA 55
Gráfico 8 - Teste de DSCF – Cintilografia de Perfusão do Miocárdio Protocolo 1 dia
na fase de repouso
Gráfico 9 - Teste de DSCF- Cintilografia de Perfusão do Miocárdio Protocolo 2 dias
na fase de repouso
Gráfico 10 - Teste de DSCF- Cintilografia de Perfusão do Miocárdio Protocolo 2
dias Stress
Gráfico 11 - Teste de DSCF- Cintilografia de Renal DTPA 57

LISTA DE SIGLAS

BGO	Óxido Germinado de Bismuto
Bq	Becquerel
BSS115	Basic Safety Standards 115
Ci	Curie
CNEN	Comissão Nacional de Energia Nuclear
	European Association of Nuclear Medicine and Molecular
EANIVIIVII	Imaging
GSO	Ortossilicato de Gadolínio
ICRP	International Comimission on Radiological Protection
KeV	Kiloeletron-volt
LET	Linear Energy Transfer
LSO	Ortossilicato de Leutécio
mCi	miliCurie
MeV	Megaeletron-volt
NRD	Níveis de Referência em Diagnóstico
PET	Tomografia de Emissão de Pósitrons
SBMN	Sociedade Brasileira de Medicina Nuclear
SI	Sistema Internacional
SMN	Serviços de Medicina Nuclear
SNMMI	Society of Nuclear Medicine and Molecular Imaging
SPECT	Tomografia de Emissão de Fóton Único
SUS	Sistema Único de Saúde

1 INTRODUÇÃO

Até o final da década de 1950 não havia estudos conclusivos relacionados a medição da dose recebida por pacientes em procedimentos que envolviam radiação ionizante. Até esse momento, acreditava-se que os únicos efeitos biológicos associados a radiação ionizante eram a leucemia e a indução de efeitos genéticos. Com isso, os primeiros estudos dosimétricos se concentraram na medição das doses absorvidas nas gônadas e na medula óssea vermelha, que são as principais regiões envolvidas no desenvolvimento dessas anomalias (WALL e SHRIMPTON, 1998). Entende-se por dose absorvida pelo paciente como a razão entre a energia absorvida pela massa do organismo.

O projeto Adrian Survey foi um dos pioneiros na Europa e no mundo a realizar estudos dosimétricos sistemáticos nas regiões das gônadas e medula óssea vermelha utilizando um dosímetro a gás, que operava na região da câmara de ionização (ADRIAN, 1996). Os resultados preliminares da dosimetria demonstraram uma variação considerável entre as doses recebidas pelos pacientes em diferentes hospitais. Tendo como exemplo a coluna lombar, local utilizado para a realização da dosimetria de medula óssea, houve uma variação de dose de até 10.000 vezes entre as diferentes unidades hospitalares.

Estudos prospectivos na Europa, principalmente no Reino Unido, e nos Estados Unidos também encontraram diferenças de doses para o mesmo exame em diferentes hospitais. Tal constatação estava ligada, principalmente, a indisponibilidade de informação da estimativa da dose recebida pelos pacientes durante os procedimentos. (MACCIA, 1996).

Com isso, uma medida importante para reparar essa problemática foi a disponibilização de métodos onde a equipe responsável pelo procedimento pudesse acompanhar a dose entregue aos pacientes durante os exames (WALL e SHRIMPTON, 1998). A partir disso, seria possível estimar e propor um conjunto de níveis de referência em diagnóstico (NRD) para determinados procedimentos, possibilitando que a equipe médica e técnica utilizasse essas informações como consulta para otimizar os procedimentos (WALL e SHRIMPTON, 1998). Desse

modo, os NRDs se tornaram uma ferramenta para a otimização de doses utilizadas para realização de exames em pacientes.

Após os levantamentos pioneiros no Reino Unido e nos Estados Unidos, os NRDs assumiram proporções internacionais, sendo introduzidas pela primeira vez por meio da publicação 73 da *International Commission on Radiological Protection* (ICRP) em 1996 (ICRP, 1996) e, posteriormente, pela diretiva de exposição médica da *European Communities,* realizada no dia 30 de junho de 1997, que exigia que os países da União Europeia estabelecessem NRDs como parte dos programas de proteção radiológica de cada país membro (COUNCIL DIRECTIVE 97/43, 1997).

Em 2015 a ICRP lançou a sua publicação 135 tratando especificamente dos NRDs (VAÑÓ et al, 2015). Tal documento foi necessário devido a necessidade da inclusão de informações importantes, como a definição do intervalo necessário para reavaliar e atualizar os valores, a utilização adequada dos NRDs na prática clínica e o aprimoramento dos métodos para aplicação prática dos NRDs.

Além disso, com o desenvolvimento de outras modalidades diagnósticas, como a medicina nuclear, surgiu a necessidade de informar como o conceito dos NRDs pode ser aplicado as tecnologias de imagem, como a Tomografia de Emissão de Pósitrons (PET) e a Tomografia de Emissão de Fóton Único (SPECT) (ICRP, 2017), que possibilitam a realização dos exames de medicina nuclear.

Segundo a Sociedade Brasileira de Medicina Nuclear (SBMN), "a medicina nuclear é uma especialidade médica que, utilizando métodos seguros, praticamente indolores e não invasivos, emprega materiais radioativos com finalidade diagnóstica e terapêutica. Usa quantidades mínimas de substâncias radioativas (radiofármacos) como ferramenta para acessar o funcionamento dos órgãos e tecidos vivos, realizando imagens, diagnósticos e, também, tratamentos" (SBMN, 2022). Em 2016 o Brasil consumiu 4% de toda a produção de radioisótopos do mundo, o que gerou cerca de 2 milhões de procedimentos em medicina nuclear no mesmo ano (RIBEIRO, 2017). Atualmente, o Brasil contabiliza 481 serviços com licenças de operação concedidas pela Comissão Nacional de Energia Nuclear (CNEN) (CNEN, 2022).

Dessa forma, com o aumento do número de procedimentos em medicina nuclear no Brasil, os NRDs são de suma importância para a padronização dos procedimentos diagnósticos e, consequentemente, para o auxílio na diminuição das doses em pacientes.

Além disso, o Brasil, como membro da UNSCEAR, deve contribuir com os dados de NRDs ao projeto UNSCEAR'S Global Survey Of Radiation Exposure (UNSCEAR,2017).

1.1 Objetivo Geral

O objetivo do presente trabalho de conclusão de curso é estimar os NRDs nacionais para diferentes exames de medicina nuclear.

1.2 Objetivos Específicos

A partir de então, espera-se comparar esses valores com as estimativas de NRDs levantados em 2015 (VAÑÓ et al, 2017), avaliar os resultados com a evolução tecnológica dos equipamentos disponíveis no mercado, verificar a contribuição das macrorregiões do Brasil para os atuais valores de NRDs e comparar com o cenário internacional.

2 FUNDAMENTOS TEÓRICOS

2.1 Medicina Nuclear

A medicina nuclear é a prática que envolve a administração de substâncias radioativas denominadas radiofármacos ou radiotraçadores, que englobam diferentes espécies de medicamentos conforme o objetivo clínico. (CHERRY et al, 2012 e ARAUJO et al, 2008).

A medicina nuclear possui aplicações majoritariamente diagnósticas, representando cerca de 95% dos procedimentos realizados no mundo, enquanto as terapias englobam cerca de 5% (ARAUJO et al, 2008).

Os procedimentos de imagem ocorrem na medida que um dado radiotraçador é administrado ao paciente e emite radiação em regiões específicas do organismo, gerando imagens que fornecem informações funcionais de uma determinada estrutura ou órgão (CAMPOS, 2022).

As imagens em medicina nuclear podem ser subdivididas em duas classes. A primeira delas são as imagens oriundas de radionuclídeos emissores de fóton único. Nesses procedimentos a imagem é gerada por meio de um equipamento denominado SPECT, que engloba os procedimentos realizados por radionuclídeos emissores de fótons. A segunda categoria abrange as imagens geradas por radioisótopos emissores de pósitrons, que por sua vez necessitam de um equipamento de PET para gerar as suas respectivas imagens. Em ambos os casos podem ocorrer acoplamentos de equipamentos de tomografia computadorizada ou de ressonâncias magnéticas nucleares para a formação de imagens complementares (CHERRY et al, 2012).

Os exames de medicina nuclear se destoam dos demais procedimentos diagnósticos de imagem à medida que geram imagens funcionais de estruturas e órgãos, enquanto os demais mostram apenas informações anatômicas (CHERRY et al, 2012).

2.2 Radiofármacos

Os radiofármacos são compostos formados por uma molécula radioativa, que permite a formação da imagem, e uma molécula carreadora, que transporta o

material radioativo para uma região que possui uma afinidade biológica. Esses sítios costumam ser órgãos ou um sistema (EUROPEAN PHARMACOPEIA, 2017; FARMACOPEIA BRASILEIRA, 2010). Após a administração do radiofármaco no paciente, seja ela por inalação, via oral ou injeção (RIBEIRO, 2017 e VITAL et al, 2019), a molécula radioativa passa por um processo de decaimento, fazendo com que sua atividade diminua progressivamente em função da sua meia vida física. Além disso, o próprio organismo passa a eliminar esses materiais por meio de excretas fisiológicas. O controle desses fatores representa pontos cruciais para a proteção radiológica do paciente e a geração de imagens adequadas para o diagnóstico (VITAL et al, 2019). A figura 1 apresenta alguns radiofármacos e seus respectivos sítios de acúmulo no organismo humano.

Figura 1 - Relação de alguns radiofármacos utilizados na medicina nuclear e seus respectivos sítios de concentrações.

Fonte: CARDOSO (2012).

2.3 Desintegração ou Decaimento Nuclear

O processo de decaimento radioativo ocorre à medida que núcleos instáveis emitem espontaneamente partículas ou ondas eletromagnéticas a fim de alcançarem a estabilidade. Essas desintegrações podem causar ou não transmutações nos elementos radioativos (OKUNO et al, 2014 e ATTIX, 1991). Os processos de decaimento podem ser do tipo Alfa, Beta e Gama e possuem características importantes para a realização de procedimentos em medicina nuclear.

A lei fundamental do decaimento é dada pela equação 1, onde N_0 é o número de núcleos radioativos presentes antes do processo de decaimento e N(t) é o número de átomos que não decaíram após um determinado tempo t. A variável λ representa a constante de decaimento, que é a probabilidade de um átomo decair em um determinado intervalo de tempo.

$$N(t) = N_0 \cdot e^{-\lambda t} \tag{1}$$

2.4 Decaimento alfa (α)

O decaimento alfa ocorre comumente em elementos químicos que possuem núcleos pesados, mais precisamente com números atômicos maiores que 83 (Bismuto) (OKUNO et al, 2014). O processo ocorre conforme um elemento emissor Alfa é desintegrado reduzindo sua massa atômica (A) em quatro unidades e o número atômico (Z) em duas unidades. O processo de desintegração α pode ser descrito pela equação 2.

$${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He \tag{2}$$

Na equação acima, X é o elemento emissor Alfa, também conhecido como elemento pai, e Y é o elemento produto do decaimento, chamado de elemento filho. Como o núcleo de Hélio $({}^{4}_{2}He)$ possui dois nêutrons e dois prótons, pode-se afirmar que um emissor alfa emite um núcleo de ${}^{4}_{2}He$.

Por possuírem um alto *Linear Energy Transfer* (LET), os emissores Alfa não são utilizados para a realização de exames diagnósticos, entretanto são altamente aplicáveis em procedimentos terapêuticos (UNSCEAR, 2008).

2.5 Decaimento Beta (β)

O decaimento Beta pode ocorrer naturalmente durante as fissões nucleares. Durante o processo ocorre a emissão de partículas sem cargas denominadas neutrinos v_e ou anti-neutrinos $\overline{v_e}$, que carreiam parte da energia oriunda do processo (OKUNO et al, 2014). O gráfico 1 demonstra o espectro de energia do decaimento Beta no Bismuto 210. O eixo das abscissas representa a energia (keV) dos elétrons. Ao contrário do decaimento Alfa, a emissão não é monoenergética em função dos neutrinos e anti-neutrinos. Com isso, o feixe é formado por elétrons de diferentes energias já que a distribuição das energias entre os v_e , os $\overline{v_e}$ e os elétrons emitidos não são iguais em cada emissão.

Gráfico 1 - Espectro de energia do decaimento Beta no Bismuto 210.

Fonte: OKUNO (2010).

O fator determinante para a definição de qual dessas partículas (v_e ou $\overline{v_e}$) será emitida é a verificação se o elemento é um emissor de elétrons (β^-) ou um emissor de pósitrons (β^+).

No decaimento β^- , o núcleo do elemento emissor apresenta um desbalanço entre as quantidades de nêutrons e prótons no núcleo, sendo a presença de nêutrons superior à de prótons. Para atingir o equilíbrio, esse elemento realiza uma emissão Beta, fazendo com que o elemento filho gerado mantenha a massa atômica do elemento pai com um número atômico maior em uma unidade e um anti-neutrino seja liberado, conforme a equação 3.

$${}^{A}_{Z}X \to {}^{A}_{Z+1}Y + {}^{0}_{-1}\beta^{-} + {}^{0}_{0}\overline{v_{e}}$$
(3)

No decaimento β^+ o grande número de prótons em relação a nêutrons induz os prótons do núcleo a se transformarem em um nêutron, emitindo um pósitron e um neutrino, como mostrado na equação 4.

$${}^{A}_{Z}X \to {}^{A}_{Z-1}Y + {}^{0}_{1}\beta^{+} + {}^{0}_{0}v_{e}$$
(4)

2.6 Decaimento Gama

O decaimento gama ocorre em núcleos que possuem nucleons em estados excitados.

Durante a transição dos nucleons entre o estado de maior energia para o de menor energia, um fóton gama característico é emitido, como mostrado na equação 5. O núcleo pai possui o mesmo número atômico e número de massa do núcleo filho. Ambos são distinguidos unicamente pelo estado de excitação dos nucleons do núcleo pai em relação ao núcleo filho.

O fóton gama, por não apresentar carga e massa, não altera nem o número atômico nem o número de massa no elemento filho.

$${}^{A}_{Z}X^{*} \to {}^{A}_{Z}X + \gamma \tag{5}$$

2.7 Meia Vida Física $(t_{1/2}f)$

A meia vida física é o tempo necessário para que metade dos núcleos de uma amostra de um determinado radioisótopo decaia. A relação entre a meia vida física e a constante de decaimento é dada à medida que o N(t) da equação 1 é dado pela metade dos núcleos dos átomos iniciais $\frac{N_0}{2}$. Substituindo o valor de N(t) na equação 1, tem-se a equação 6 e, posteriormente, a equação 7, onde é possível verificar a relação entre $t_{1/2}f \in \lambda$.

$$\frac{N_0}{2} = N_0 e^{-\lambda t_{1/2} f}$$
(6)

$$t_{1/2}f = \frac{\ln 2}{\lambda} \tag{7}$$

2.8 Meia Vida Biológica $\left(t_{1/2}bio\right)$

A meia vida biológica é utilizada em casos em que há a entrada de radionuclídeos no organismo. Ela consiste no tempo necessário para que a metade dos núcleos radioativos no interior do organismo humano seja reduzido à metade em função da eliminação de suas excretas.

Esse processo é altamente dependente das excretas fisiológicas, como sudorese, urina e fezes, bem como do órgão ou tecido em que esse nuclídeo tende a ser armazenado.

Em última instância, a $t_{1/2}bio$ é o principal indicador do cálculo de tempo necessário para o organismo eliminar um radionuclídeo específico. Em cálculos mais conservadores, deve-se considerar as variações metabólicas por sexo e idade, por exemplo.

2.9 Meia Vida Efetiva $(t_{1/2} efetiva)$

A meia vida efetiva é relevante em casos em que há a ocorrência de uma contaminação interna ou para fins de cálculo de dosimetria interna em pacientes e profissionais, pois considera as características físicas do material radioativo e as características biológicas do organismo. A meia vida efetiva é dada pela equação 8.

$$t_{1/2}efetiva = \frac{\left(T_{\frac{1}{2}}bio\right) \cdot \left(T_{\frac{1}{2}}f\right)}{T_{\frac{1}{2}}bio + T_{\frac{1}{2}}f}$$
(8)

A Figura 2 mostra a meia vida física, biológica e efetiva de alguns dos radionuclídeos mais utilizados em medicina nuclear.

Radioisótopo	Meia-vida em dias			
Radioisotopo	T _{1/2fis}	T _{1/2bio}	T _{1/2efetiva}	
³ H	$4,5 \times 10^{3}$	12	12	
14C	2.1×10^{6}	40	40	
²² Na	850	11	11	
32P	14,3	1155	14.1	
35 S	87,4	90	44.3	
36CI	1.1×10^{8}	29	29	
⁴⁵ Ca	165	$1,8 \times 10^{4}$	164	
⁵⁹ Fe	45	600	42	
⁶⁰ Co	$1,93 \times 10^{3}$	10	10	
⁶⁵ Zn	244	933	193	
⁸⁶ Rb	18,8	45	13	
⁹⁰ Sr	1.1×10^{4}	1.8×10^{4}	6.8×10^{3}	
99 <i>m</i> TC	0,25	1.0	0,20	
123 ₁	0,54	138	0,54	
131	8	138	7.6	
137Cs	1.1×10^{4}	70	70	
¹⁴⁰ Ba	12,8	65	10,7	
¹⁹⁸ Au	2.7	280	2.7	
210 PO	138	60	42	
²²⁶ Ra	5.8×10^{5}	1.6×10^{4}	1.5×10^{4}	
2350	2.6×10^{11}	15	15	
²³⁹ Pu	8.8×10^{6}	7.3×10^{4}	7.2×10^{4}	

Figura 2 - Meia vida física, biológica e efetiva de alguns radionuclídeos importantes na medicina nuclear em dias.

Fonte: OKUNO (2010).

2.10 Atividade (*A*)

Atividade é a taxa de decaimento de um determinado radionuclídeo, sendo uma grandeza intrínseca a cada material radioativo. Em última instância, é a quantidade de desintegrações do material radioativo em um determinado intervalo de tempo. A grandeza de unidade da atividade no Sistema Internacional (SI) é o Becquerel (Bq), entretanto a grandeza mais utilizada nas rotinas das clínicas de medicina nuclear no Brasil é o Curie (Ci).

A atividade esperada de um determinado material radioativo após um determinado espaço de tempo é dada pela equação 9.

$$A = A_0 \cdot e^{-\lambda t} \tag{9}$$

Onde,

A é a atividade final do material;

 A_0 é a atividade inicial do material;

 λ é constante de decaimento;

t é o tempo decorrido entre a atividade inicial e a atividade inicial.

Para cálculos de decaimento da atividade radioativa mais conservadores a meia física efetiva deverá ser considerada.

2.11 Interação dos fótons gama com a matéria

Os fótons gama podem interagir com a matéria regidos por dois parâmetros básicos: a energia do fóton gama incidente e o número atômico do elemento químico do material alvo (POWSNER et al, 2006).

O efeito Compton, Fotoelétrico e de formação de pares são eventos possíveis de ocorrerem em uma interação do fóton com a matéria. Desses, apenas os dois primeiros são de comum ocorrência na prática da medicina nuclear, já que o terceiro depende do envolvimento de fótons incidentes de pelo menos 1,022 MeV. As probabilidades dessas três interações ocorrerem estão demonstradas no gráfico 2.

Gráfico 2 - Regiões de probabilidades de interação dos fótons gama com a matéria de acordo com a energia do fóton incidente e do número atômico do material do alvo.

Fonte: YOSHIMURA (2015).

No efeito Compton um fóton de comprimento de onda λ é absorvido pelo átomo que compõe o alvo. Após a absorção, um fóton espalhado é gerado com um comprimento de onda λ' , sendo $\lambda < \lambda'$, e um elétron é deslocado segundo um ângulo arbitrário φ (EISENBERG et al, 1979).

O efeito Compton ocorre quando o elétron do átomo do alvo que sofrerá a interação está em repouso, ou seja, quando a energia desse elétron é substancialmente menor que a energia do fóton incidente.

Desse modo, a quantidade de energia que é emitida pelo fóton espalhado é dada pela equação 10, sendo *h* a constante de Planck, $v \in v'$ as frequências do fóton incidente e do fóton emitido, respectivamente, e θ o ângulo do espalhamento do fóton.

$$hv' = \frac{hv}{1 + \left(\frac{hv}{m_0 c^2}\right)(1 - \cos\theta)} \tag{10}$$

O efeito fotoelétrico ocorre quando um fóton é completamente absorvido pelo elétron do material alvo, causando a sua ejeção do material. A energia do elétron

emitido E_c é dada pela equação 11, onde hv é a energia do fóton incidente e w é a função trabalho necessária para ejetar esse elétron. Dessa forma, conclui-se que o cenário ideal para uma energia de ejeção máxima é o elétron ter uma função trabalho menor possível (EISENBERG et al, 1979).

$$K = hv - w \tag{11}$$

Em procedimentos de SPECT, como será abordado posteriormente, o efeito fotoelétrico é de suma importância para obtenção de uma imagem diagnóstica com menos ruídos, ao passo que o espalhamento Compton é um dos principais motivos de ruídos na imagem.

2.12 Aniquilação de Pares

Para os procedimentos de PET o processo de aniquilação de pares é crucial. Tal processo ocorre à medida que um par elétron-pósitron essencialmente em repouso e próximos entre si se unem, aniquilando-se. Como o momento inicial do sistema pósitron-elétron é zero, dois fótons diametralmente opostos são emitidos com energias iguais a 511 KeV para garantir que o momento linear seja conservado. A figura 3 ilustra esse processo.

Figura 3 - Par elétron-pósitron em repouso e próximos e, após isso, o processo de aniquilação propriamente dito, onde dois fótons de mesma energia (hv_1= hv_2) são emitidos em sentidos diametralmente opostos.

Fonte: EISENBERG et al (1979).

2.13 Cintilação

O processo de cintilação na medicina nuclear ocorre principalmente em cristais de Nal dopados com Tálio (TI) para melhor resposta aos fótons gama.

O processo de cintilação ocorre conforme os fótons gama são absorvidos pelos cristais, causando a excitação dos elétrons presentes no cristal por meio de inúmeras interações fotoelétricas ou Compton. Ao passo que esses elétrons retornam para seus estados originais eles emitem fótons na frequência da luz visível. O processo acima é descrito na figura 4.

Figura 4 - Esquema de Cintilação de um cristal de Nal dopado com TI.

Fonte: POWSNER et al (2006).

2.14 SPECT

Os procedimentos de medicina nuclear que utilizam o SPECT são realizados por um equipamento denominado Gama Câmara. Sua estrutura é composta por colimadores, cristais de cintilação, fotomultiplicadoras, pré-amplificadores e amplificadores, como ilustrado na figura 5.

Figura 5 - Estrutura básica de uma gama câmara.

Fonte: POWSNER et al (2006).

2.14.1 Colimadores

Os colimadores são placas formadas por septas de chumbo com a finalidade de selecionar os fótons gama para gerar uma imagem com nitidez. Como os radionuclídeos emitem fótons em todas as direções, pode ocorrer de um fóton partir de uma determinada região do organismo e sensibilizar uma região do detector correspondente a uma outra fração de um órgão ou estrutura. Sendo assim, os colimadores têm o objetivo de impedir que tal evento ocorra. A figura 6 representa a estrutura de um colimador.

Fonte: POWSNER et al (2006).

2.14.2 Cristais de Nal dopados com TI

Os cristais de Nal dopados com Tálio irão receber os fótons filtrados pelos colimadores e o processo de cintilação apresentado no tópico 2.13 ocorrerá. O processo é representado na figura 7.

Figura 7 - Processo de emissão de fótons pelo órgão ou estrutura em que o radiofármaco está armazenado e o processo de cintilação que ocorre na interação do fóton com os cristais de Nal dopados com TI.

Fonte: POWSNER et al (2006).

2.14.3 Fotomultiplicadoras

As fotomultiplicadoras são tubos a vácuo acoplados aos cristais por meio de um gel com o mesmo índice de refração do cristal, para que nenhum fóton de luz seja atenuado, onde uma diferença de potencial é aplicada. À medida que esses fótons de luz atingem as regiões denominadas de dinodos no interior das fotomultiplicadoras, elétrons são ejetados.

Quando esses elétrons são submetidos a uma diferença de potencial, eles provocam o efeito de aumento de elétrons em cascata, gerando assim um pulso elétrico proporcional a intensidade da luz emitida na cintilação, como representado na figura 8.

Figura 8 - Processo de formação da imagem desde a emissão do fóton gama até o efeito cascata nas fotomultiplicadoras.

Fonte: POWSNER et al (2006).

2.14.4 Pré-amplificadores e amplificadores

O sinal em forma de pulso elétrico que sai da fotomultiplicadora muitas vezes não é suficiente para se associar ao fóton incidente. Com isso, torna-se necessário a aplicação de um processo de amplificação do sinal.

Em um primeiro momento, um pré-amplificador é colocado próximo a fotomultiplicadora, aumentando a corrente do pulso elétrico. Caso ainda seja necessário, um amplificador de sinal é acoplado ao lado do amplificador, podendo aumentar o sinal em até mil vezes. O esquema citado pode ser observado na figura 9.

Fonte: POWSNER et al (2006).

2.14.5 Analisadores de Altura do Pulso

O analisador de altura do pulso tem como finalidade selecionar pulsos chamados de "pulsos Z", que correspondem a margem de energias aceitáveis para um determinado radioisótopo. O intervalo de pulso Z é denominado de Janela de Energia e convencionalmente utiliza-se o valor do pico energético \pm 20%. A figura 10 mostra um exemplo de um analisador de altura do pulso.

Figura 10 - Exemplo de Tc99m, que possui o fotopico em 140 KeV. Como a janela de energia é de ± 20%, o analisador de pulso só contabiliza pulsos referentes a energias entre 112 KeV e 168 KeV.

Fonte: POWSNER et al (2006).

2.14.6 Computadores

Os computadores têm a função de detectar um pulso contabilizado pelo Analisador de altura do pulso e registrá-lo em uma matriz de pixels, formando a imagem, como pode ser observado pela figura 11.

Figura 11 - Exemplo de uma imagem bidimensional de um exame de SPECT.

Fonte: POWSNER et al (2006).

2.15 Tomografia de Emissão de Pósitrons

O princípio do PET consiste na detecção de fótons oriundos da aniquilação de um pósitron com o elétron. O processo ocorre à medida que os pósitrons emitidos percorrem uma curta distância até colidirem com elétrons da matéria ao redor, gerando dois fótons diametralmente opostos de 511 KeV. Exceto pelo evento da aniquilação, a aquisição da imagem do PET é semelhante ao SPECT.

2.15.1 Cristais

Os cristais de Nal dopados com Tálio foram originalmente utilizados para o sistema PET, entretanto, como esses cristais possuem baixa densidade, os mesmos não são adequados para o processo de cintilação para os fótons de 511 keV provenientes da aniquilação, pois a alta energia associada a um alvo de baixo número atômico levaria ao aumento do efeito Compton em detrimento ao fotoelétrico.

Com isso, cristais com densidades mais altas e números atômicos (Z) mais altos, como Óxido Germinado de Bismuto (BGO), Ortossilicato de Leutécio (LSO) e Ortossilicato de Gadolínio (GSO), são comumente usados para imagens de 511 keV de PET devido à sua maior sensibilidade para detectar fótons do que cristais menos densos.

2.15.2 Fotomultiplicadora para sistema PET

A fotomultiplicadora do sistema PET tem o mesmo objetivo e funcionamento das fotomultiplicadoras no sistema SPECT.

O fator que distingue as fotomultiplicadoras de um sistema para outro é que no sistema SPECT as fotomultiplicadoras estão acopladas em um grande cristal de cintilação, enquanto no sistema PET o cristal é subdivido em frações menores e agrupados em cada fotomultiplicadora, como mostra a figura 12. As fendas entre as subdivisões dos cristais conduzem a luz dos fótons produzidos pela cintilação em direção as fotomultiplicadoras, o que permite a localização do ponto de sensibilização do fóton no cristal.

Figura 12 - Frações do cristal conectados a fotomultiplicadora.

Fonte: POWSNER et al (2006).

2.15.3 Analisadores de altura do pulso, discriminadores de tempo e circuitos de coincidência

Os sinais provenientes das fotomultiplicadoras, assim como no sistema SPECT, precisam passar por pré-amplificadores e amplificadores para gerarem sinais que possam ser associados a sensibilização dos cristais, semelhantemente ao item 2.14.4.

O princípio de detecção do PET é baseado na detecção dos fótons diametralmente opostos emitidos na aniquilação do pósitron. A detecção ocorre conforme os fótons sensibilizam detectores posicionados em linha, mas em extremidades opostas.

Um dos instrumentos para identificação desses fótons é o analisador de pulso, que verifica se a amplitude do pulso corresponde a energia de 511 keV, como no SPECT.

Outro sistema de identificação desse fóton é o discriminador de tempo, que registra o tempo exato em que esses fótons sensibilizaram os respectivos detectores.

Por fim, o circuito de coincidência examina sinais de amplitude adequada provenientes de detectores opostos e determina se o tempo dos sinais ocorreu

dentro da janela de tempo de coincidência. Esses processos estão representados pelas figuras 13 e 14.

Figura 13 - Um evento de sensibilização por fótons diametralmente opostos é aceito após o processamento pelos analisadores de altura de pulso, discriminadores de tempo e circuitos de coincidência.

Fonte: POWSNER et al (2006).

Figura 14 - Exemplo de um caso de sensibilização que é rejeitado pelos analisadores de altura de pulso, discriminadores de tempo e circuitos de coincidência. Pode ser que o fóton sofra alguma interação no percurso até um dos detectores, fazendo com que haja perda.

Fonte: POWSNER et al (2006).

3 Níveis de Referência em Diagnóstico

O nível de referência em diagnóstico é um parâmetro utilizado na otimização da proteção radiológica de pacientes em procedimentos médicos de imagens que envolvem exposições a radiação. Os parâmetros coletados para determinação do NRD podem variar de acordo com as diferentes modalidades diagnósticas. Na medicina nuclear os NRDs são estabelecidos de acordo com as atividades administradas ou prescritas a pacientes em diferentes exames, utilizando como
referência um indivíduo adulto de 70 \pm 10 kg (VAÑÓ, 2015; EANM, 2021), à medida que as atividades prescritas se baseiam em atividades padrões ou com base em coeficientes entre atividade administrada por peso do paciente.

Os NRDs não são valores limitantes, mas uma ferramenta que sugere valores de atividades que podem ser administradas para se adquirirem imagens adequadas para o diagnóstico, podendo servir de parâmetros para níveis de ação ou investigação, caso esses valores sejam extrapolados. Com isso, é necessário avaliar as imagens pós exames com o objetivo de verificar se determinada instalação alcançou a otimização utilizando os valores de NRD (VAÑÓ et al, 2015). Esses valores devem ser atualizados periodicamente à medida que ocorrem avanços dos parques tecnológicos, técnicas de imagens e ascensão de novos radiofármacos.

4 MATERIAIS E MÉTODOS

Para a realização do presente trabalho um formulário foi elaborado e enviado para Serviços de Medicina Nuclear em clínicas e hospitais no Brasil no período de 02 de fevereiro de 2022 a 02 de março de 2022. O Critério de Inclusão foi possuir licença de operação vigente.

Os formulários continham campos onde as instalações deveriam informar sobre qual o equipamento era utilizado (SPECT ou PET), o ano de fabricação e a atividade administrada aos pacientes para diferentes procedimentos que, por sua vez, foram divididos em exames de PET, SPECT com administração de I123 e I131, Tc99m e outros radionuclídeos que são utilizados na medicina nuclear no país. Foi disponibilizado um espaço para a colocação de até 10 equipamentos, possibilitando que as clínicas que dispusessem de múltiplos equipamentos pudessem registrálos.

Para que não houvesse duplicidade dos dados e houvesse rastreio da localidade das clínicas e instalações, um campo foi inserido no questionário para que cada instalação pudesse colocar seu número de registro da Comissão Nacional de Energia Nuclear.

Os formulários foram enviados através do e-mail institucional da Coordenação Geral de Instalações Médicas e Industriais (CGMI) da Comissão Nacional de Energia Nuclear (CNEN) para todos os serviços de medicina nuclear do país solicitando a adesão de forma voluntária ao projeto. Após o recebimento dos formulários pela CNEN, os dados foram organizados em planilhas para as devidas tratativas das informações.

Para determinação dos NRDs nacionais, foi realizado o levantamento do terceiro quartil das atividades administradas aos pacientes em cada exame de medicina nuclear do país.

As instalações foram separadas de acordo com as cinco macrorregiões do país (Sul, Sudeste, Centro-oeste, Nordeste e Norte) para que fosse possível verificar como os NRDs regionais se afastam ou se aproximam dos NRDs nacionais.

Para a verificação da atualização do parque tecnológico da medicina nuclear no país foi levantada a média dos anos de fabricação dos equipamentos de medicina nuclear utilizados no país e em suas cinco macrorregiões.

4.1 Análise estatística

Os fabricantes dos equipamentos têm investido em tecnologias específicas, como a tecnologia CZT. Dessa forma, o presente trabalho realizou uma análise estatística dos NRDs para clínicas que utilizam Gama Câmaras dedicadas a procedimentos de miocárdio e com as gamas câmaras com a tecnologia CZT dedicadas a procedimentos de miocárdio.

Posteriormente, foi realizada uma análise comparativa entre os procedimentos de miocárdio que utilizam a câmara CZT dedicada com os mesmos procedimentos que não utilizam gama câmaras, utilizando o software JAMOVI que utiliza o pacote estatístico da linguagem R. (JAMOVI,2022 E R CORE TEAM, 2021).

Para isso, foi realizado o teste de Shapiro-Wilk, objetivando a verificação da normalidade da amostra para, em seguida, verificar qual seria o melhor teste que poderia ser utilizado para comparar as amostras.

Por se tratar de duas várias categóricas nominais medidas por meio de uma variável quantitativa, as duas opções de testes que mais se adequaram ao presente estudo foram o teste T-*student*, para amostras com distribuição normal, e o teste não pareado de Mann-Whitney, caso o teste de Shapiro-Wilk acuse uma não normalidade nas amostras. Para a comparação de três ou mais variáveis categóricas utilizou-se o teste Análise de Variância para amostras consideradas normais pelo teste de Shapiro-Wilk, e o teste de Kruskal-Wallis para amostras com distribuições normais.

Nos casos em que se observou a necessidade, foi utilizado o teste Post-Hoc de comparação de variáveis Dwass-Steel-Critchlow-Fligner (DSCF). Para esses testes, optou-se pela utilização do intervalo de confiança padrão de 95%.

5 RESULTADOS E DISCUSSÃO

Até o momento do envio dos formulários, havia 471 Serviços de Medicina Nuclear (SMN) com licenças de operação vigentes no Brasil (CNEN, 2022). Desses, 181 (38,4%) serviços responderam ao formulário enviado. A distribuição dos serviços de Medicina Nuclear participantes se encontra no gráfico 3.

Gráfico 3 - Distribuição de SMN participantes do trabalho distribuídos por regiões.

Fonte: Autoria própria (2023).

O gráfico 4 revela a distribuição dos serviços de medicina nuclear com licença de operação vigente no país de acordo com a sua distribuição por regiões durante o intervalo de tempo de coleta dos dados.

Gráfico 4 - Distribuição dos Serviços em medicina nuclear por regiões do Brasil. O resultado encontra-se em porcentagem.

Fonte: Autoria própria (2023).

O gráfico 5 demonstra o número de serviços de medicina nuclear com licença de operação ativa e a aderência dos SMN por região. No eixo das abscissas estão o as 5 macrorregiões do Brasil e no eixo das ordenadas estão o número de serviços.

Gráfico 5 - Correlação dos serviços de medicina nuclear com licença de operação vigentes e dos serviços participantes por macrorregião.

Fonte: Autoria própria (2023).

Comparativamente, durante o estudo realizado em 2015 (WILLEGAIGNON, J., 2015), o Brasil possuía 432 Serviços de Medicina Nuclear, desses, 107 aderiram ao projeto (24,7%). O gráfico 6 revela a adesão por macrorregiões dos serviços de medicina nuclear que responderam ao formulário do estudo supracitado em 2015.

Gráfico 6 - Adesão dos serviços de medicina nuclear de acordo com as 5 macrorregiões do país no estudo de 2015.

Fonte: Autoria própria (2023).

Com relação aos exames selecionados no estudo de 2015 e o estudo atual, retirou-se o exame de Trânsito Colônico com Citrato de Gálio-67 e incluiu-se os exames de cintilografia para quantificação do shunt extracardíaco com pertecnetato, de cintilografia de perfusão do miocárdio para localização de necrose com 99mTc pirofosfato, de trânsito esofágico utilizando 99mTc-Fitato/Estanho/Enxofre em liquido, de trânsito esofágico utilizando 99mTc-Fitato/Estanho/Enxofre em semisólidos, de cintilografia para pesquisa de hemorragia digestiva ativa com 99mTc e hemácias marcadas e de cintilografia para pesquisa de hemorragia digestiva não ativa utilizando 99mTc com Hemacias Marcadas.

Para procedimentos utilizando a tomografia de emissão de pósitrons, incluiu-se o PET PSMA utilizando Gálio-68 e o dotatate utilizando Gálio-68.

Os equipamentos, tanto de PET como de SPECT, possuem um tempo de uso médio de 12 anos, considerando o ano de fabricação e o ano de realização do presente estudo. Os dados regionais do ano de fabricação se encontram na tabela 1.

Região	Média do ano de fabricação (ano)
Sudeste	2010
Sul	2010
Centro-oeste	2011
Nordeste	2012
Norte	2010

Tabela 1 - Média do ano de fabricação dos equipamentos de medicina nuclear participantes da pesquisa.

Fonte: Autoria própria (2023).

As tabelas 2, 3, 4 e 5 mostram a análise estatística das atividades administradas nos pacientes para os procedimentos de medicina nuclear realizados no Brasil. Tais dados apresentam, respectivamente, procedimentos de PET, procedimentos de SPECT com 99mTc, procedimentos com I-123 e I-131 e procedimentos com outros Radiofármacos. As tabelas supracitadas revelam a média, mediana, desvio padrão,

dose mínima, dose máxima e o terceiro quartil (NRD) das atividades administradas nos pacientes. Os resultados estão expressos em miliCurie (mCi). O valor entre parênteses que se encontra na primeira coluna abaixo do nome do procedimento representa o número de instalações elegíveis para a estatística.

Dresedimente	Mádia	Mediene	Desvio	Máximo	Mínimo	NRD
Procedimento	Media	Mediana	Padrão	waximo	WINIMO	(3° quartil)
68Ga PSMA (37)	3,79	3,85	0,74	6,00	2,00	4,00
18F-FDG cardiológico (48)	7,17	7,00	1,48	11,90	4,90	8,31
18F-PSMA (37)	3,79	3,85	0,74	6,00	2,00	4,00
68Ga- DOTATATE (34)	4,05	4,00	1,21	8,75	2,50	4,09
18F-FDG oncológico (66)	7,97	8,40	1,31	11,90	4,20	8,43
18F-FDG neurológico (66)	5,34	5,00	1,69	10,00	2,75	6,50
18F-FDG inflamação (60)	7,42	7,70	2,13	11,90	0,00	8,40
18F-NaF (23)	7,59	7,50	1,54	10,00	3,50	8,40

Tabela 2 - Análise estatística das atividades administradas nos pacientes para os procedimentos de PET. Dados em MiliCurie (mCi).

Tabela 3 - Análise estatística das atividades administradas nos pacientes para os
procedimentos de SPECT com 99mTc. Dados em MiliCurie (mCi).

(continua)

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3°
						Quartil)
Cintilografia						
renal dinâmica	10.81	10.00	4 45	25.00	2 50	12 00
99mTc DTPA	10,01	10,00	4,40	20,00	2,00	12,00
(199)						
Cintilografia						
óssea 99mTc-	25.31	25.00	4.40	35.00	5.00	30.00
MDP	_ , _	- ,	, -)	-,	
(192)						
Cintilografia renal estática	F 40	5.00	0.07	20.00	2.00	5.00
99mTc-DMSA (207)	5,49	5,00	3,07	30,00	2,00	5,00
Cintilografia das						
paratireoides 99mTc-MIBI	20,18	20,00	4,92	30,00	10,00	23,13
(198) Cintilografia da						
tireoide 99mTc-	11,04	10,00	4,29	30,00	1,00	15,00
pertecnetato (202)						
Cintilografia						
pulmonar de perfusão	6,55	5,00	4,00	30,00	1,00	9,00
99mTc-MAA (179)						
Cintilografia de						
Perfusão Cerebral						
(SPECT	26,47	25,00	5,81	50,00	9,80	30,00
99mTc-ECD						
(27)						
Cintilografia de	12.37	10.00	4.95	30.00	2.00	15.00
salivares	.2,01	. 0,00	1,00	00,00	2,00	10,00

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
99mTc- pertecnetato (195)						<u> </u>
Pesquisa de refluxo gastro- esofágico 99mTc- Fitato/Estanho (194)	2,50	1,50	4,46	40,00	0,30	2,00
Cintilografia para pesquisa de sangramento gastrointestinal 99mTc- Hemácias Marcadas (177)	22,25	20,00	6,12	31,50	5,00	25,00
Cintilografia para quantificação do Shunt extracardíaco 99mTc- pertecnetato (83)	10,09	5,00	8,44	30,00	2,00	12,50
Cintilografia de Perfusão do Miocárdio para localização de necrose 99mTc- Pirofosfato (159)	20,28	20,00	5,90	30,00	5,00	25,00
Cintilografia de perfusão miocárdica (protocolo 1 dia) repouso 99mTc- MIBI (217)	11,55	10,00	6,15	45,00	6,00	12,00

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
perfusão miocárdica (protocolo 1 dia) estresse 99mTc-MIBI (217)	27,27	27,50	7,23	75,00	8,00	30,00
Cintilografia de perfusão miocárdica (protocolo 2 dias) estresse 99mTc-MIBI (206)	17,35	17,50	6,90	35,00	6,50	24,25
Cintilografia de perfusão miocárdica (protocolo 2 dias) repouso 99mTc-MIBI (204)	16,48	16,00	6,66	35,00	6,50	20,00
Cintilografia de fígado e vias biliares 99mTc- DISIDA (178)	7,48	5,00	4,09	22,50	0,70	8,50
Linfocintilografia de membros (linfedema) 99mTc-Fitato (176)	2,18	2,00	1,81	11,50	0,00	2,60
Cintilografia para pesquisa de divertículo de Meckel 99mTc- pertecnetato (182)	11,14	10,00	5,27	30,00	0,50	15,00
Pesquisa de esvaziamento gástrico – sólidos 99mTc- Fitato (180)	2,30	1,00	4,37	40,00	0,50	2,00

			Desvio			NRD
Procedimento	Média Media	Mediana	liana Padrão	Máximo	Mínimo	(3°
						Quartil)
Pesquisa de esvaziamento gástrico – líquidos 99mTc- Fitato (188)	1,79	1,00	1,67	15,00	0,30	2,00
Cintilografia pulmonar de inalação 99mTc-DTPA (124)	27,27	30,00	9,64	60,00	3,00	30,00
Cintilografia do fígado e baço 99mTc-Fitato (181)	8,02	7,00	3,64	20,00	4,00	10,00
Cistocintilografia direta 99m- DTPA (160)	4,15	2,00	4,51	25,00	0,50	5,00
Dacriocisto- cintilografia 99mTc- pertecnetato (168)	0,87	0,50	1,21	10,00	0,01	1,00
Trânsito esofágico 99mTc- Fitato/Estanho/ Enxofre (líquido) (172)	1,54	1,00	1,16	5,00	0,30	2,00
Trânsito esofágico 99mTc- Fitato/Estanho/ Enxofre (semisólido) (157)	1,67	1,00	1,41	10,00	0,30	2,00
Cintilografia para estudo de trânsito gástrico 99mTc- Fitato/Enxofre/E stanho (151)	2,08	1,00	2,86	20,00	0,50	2,00

				Docvio			NRD
Procedimento	Média Me	Mediana	lediana	Máximo	Mínimo	(3°	
				Padrao			Quartil)
	Ventriculografia (Gated blood pool) 99mTc- Hemácias Marcadas (138)	22,90	22,50	5,66	31,50	1,00	25,00
	Cintilografia para pesquisa de hemorragia digestiva ativa 99mTc- Hemácias Marcadas (159)	19,85	20,00	6,23	30,00	5,00	25,00
	Cintilografia para pesquisa de hemorragia digestiva não ativa 99mTc- Hemácias Marcadas (166)	21,64	20,00	6,50	31,50	5,00	25,00
	Cintilografia de corpo inteiro 99mTc-MIBI (137)	22,50	25,00	5,81	30,00	2,00	25,00
	Cintilografia para linfonodo sentinela /SNOLL / ROLL 99mTc- Fitato/99mTc- MAA (165)	1,91	1,25	3,34	30,00	0,20	2,00
	Cisternocintilogr afia 99mTc- DTPA (125)	10,24	9,80	8,26	40,00	0,50	12,50
	Estudo de Linfonodo sentinela com probe 99mTc- MIBI (102)	4,60	2,00	7,65	25,00	0,20	2,80

			Desvio			NRD
Procedimento	Média	Mediana	Desvio	Máximo	Mínimo	(3°
						Quartil)
Cintilografia Mamária 99mTc-MIBI (125)	21,70	20,00	5,76	30,00	5,00	25,00
Cintilografia de corpo inteiro com análogos da somatostatina 99mTc- Octreotídeo (150)	17,61	17,50	7,56	30,10	3,00	25,00
Cistocintilografia indireta 99mTc- DTPA (156)	10,30	10,00	5,48	30,00	1,00	12,00
Cintilografia cerebral para tumores (SPECT) 99mTc-MIBI (98)	23,71	25,00	4,89	45,00	4,00	25,00
Estudo de primeira passagem 99mTc- Hemácias Marcadas (86)	22,78	20,15	6,17	31,50	1,00	28,00
Cintilografia de medula óssea 99mTc- Fitato/Estanho (78)	12,52	10,00	7,13	50,00	3,00	13,88
Cintilografia para pesquisa de baço acessório 99mTc- Hemácias Esferocitadas (47)	16,70	20,00	5,64	30,00	5,00	20,00

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
Cintilografia renal dinâmica 99mTc-EC (43)	11,27	10,00	4,02	25,00	5,00	12,50
Cintilografia com leucócitos marcados 99mTc- leucócitos marcados (49)	23,47	20,00	13,75	50,00	7,00	40,00
Cintilografia testicular 99mTc- Pertecnetato/99 mTc-Hemácias Marcadas (133)	15,36	15,00	5,67	27,50	0,07	20,00
SPECT Cerebral 99mTc- TRODAT (145)	24,23	25,00	4,96	45,00	0,31	25,00
Cintilografia renal dinâmica 99mTc-MAG3 (24)	11,02	11,75	3,09	20,00	5,00	12,50
SPECT cerebral 99mTc-HMPAO (23)	24,61	25,00	5,17	30,00	15,00	30,00

Tabela 4 – Análise estatística das atividades administradas nos pacientes para os procedimentos com I-123 e I-131. Dados em MiliCurie (mCi).

(continua)

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
Cintilografia de corpo inteiro 123I-MIBG (94)	5,86	5,00	3,94	30,10	1,00	7,63
Cintilografia de corpo inteiro 123I-Nal (53)	5,03	4,00	2,48	10,00	2,00	5,00
Cintilografia da tireoide 123I- Nal (50)	0,99	0,55	1,60	10,00	0,20	0,75
Captação da tireoide 123I- Nal (48)	0,83	0,30	1,59	10,00	0,01	0,75
Cintilografia cardíaca 123I- MIBG (93)	5,59	5,00	3,06	10,00	0,00	7,25
Cintilografia de corpo inteiro com iodo (PCI) 131I-Nal (168)	4,18	3,50	3,15	30,10	2,00	5,00
Cintilografia de corpo inteiro 131I-MIBG (151)	2,55	2,00	1,38	6,00	0,10	3,00
Captação de Tireoide 131I- Nal (142)	0,43	0,10	2,21	25,50	0,01	0,20

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
Cintilografia da tireoide 131I-Nal (147)	0,98	0,20	2,88	15,50	0,02	0,40
Cintilografia cardíaca 131I- MIBG (70)	2,48	2,00	1,69	10,00	0,00	3,00
		Fonte: Autori	a própria (2)	023)		

Fonte: Autoria própria (2023).

Tabela 5 – Análise estatística das atividades administradas nos pacientes para os procedimentos com outros radiofármacos. Dados em MiliCurie (mCi).

(continua)

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
Determinação						
de filtração						
glomerular	0,16	0,10	0,10	0,30	0,10	0,30
51Cr-EDTA						
(8)						
Cintilografia de						
corpo inteiro						
para						
infecção/inflama	5,11	5,00	2,62	30,10	2,00	5,00
ção 67Ga-						
Citrato						
(8)						
Cintilografia de corpo inteiro para tumores 67Ga-Citrato (175)	5,76	5,00	2,22	10,00	2,00	8,00

Procedimento	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
Cintilografia de um segmento (coração/pulmã o/rim) 67Ga- Citrato (155)	3,91	4,00	1,67	10,00	1,50	5,00
Cintilografia com análogos da somatostatina 111In- octreotídeo (133)	5,87	4,50	4,90	30,00	0,00	6,00
Cintilografia de Perfusão Miocárdica 201TI-Cloreto (66)	3,42	3,00	1,01	10,00	1,50	4,00
Cintilografia cerebral paratumores (SPECT) 201TI- Cloreto (164)	3,66	4,00	0,83	6,00	2,00	4,00

Fonte: Autoria própria (2023).

Em 2022 no Brasil foram realizados 452.482 procedimentos de medicina nuclear pelo Sistema Único de Saúde (SUS) (DATASUS, 2023). Os exames de SPECT que envolvem a cintilografia de perfusão miocárdica (56%), cintilografia óssea (31%) e a cintilografia renal (3%) representaram 90% dos procedimentos realizados em 2022 no SUS. Dessa forma, optou-se em apresentar estatísticas personalizadas para esses procedimentos. Para exames de PET o procedimento de 18F-FDG oncológico foi considerado como o mais realizado e, portanto, também será avaliado de forma diferenciada.

Para escolha da distribuição estatística ideal, o teste de normalidade de Shapiro-Wilk foi aplicado as amostras. O resultado foi expresso na tabela 6. Tabela 6 – Distribuição estatísticas dos cinco principiais procedimentos realizados em medicina nuclear no Brasil.

(continua)

Teste de Shapiro-Wilk

Cintilografia de perfusão miocárdica (protocolo 1 dia) repouso 99mTc-MIBI

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,01	<0,01	<0,01	0,160	0,025
Ν	139	31	24	22	5

Cintilografia de perfusão miocárdica (protocolo 1 dia) estresse 99mTc-MIBI

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,001	0,011	<0,001	0,010	0,094
Ν	139	32	24	22	5

Cintilografia de perfusão miocárdica (protocolo 2 dias) repouso 99mTc-MIBI

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,001	0,016	0,001	0,004	0,006
Ν	119	32	24	20	5

Cintilografia de perfusão miocárdica (protocolo 2 dias) estresse 99mTc-MIBI

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,001	0,007	<0,001	0,072	0,006
Ν	120	32	48	20	5

Cintilografia Óssea 99mTc-MDP

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,01	<0,01	< 0,083	0,005	0,006
Ν	114	38	16	19	5

Teste de Shapiro-Wilk

Cintilografia renal dinâmica 99mTc DTPA

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,001	<0,001	<0,001	0,002	<0,001
Ν	119	39	17	19	5

Cintilografia renal estática 99mTc-DMSA

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,001	<0,001	<0,001	0,003	0,006
Ν	125	39	19	19	5

18F-FDG Oncológico

Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
P-Shapiro-Wilk	<0,001	<0,001	0,004	0,005	-
Ν	41	11	8	6	1

Fonte: Autoria própria (2023).

A partir dos resultados do teste de Shapiro Wilk, observa-se que todas as amostras não apresentam uma distribuição normal. Isso implica que a estatística descritiva que mais se enquadra é a mediana os intervalos entre os quartis, máximo e mínimo.

Os dados regionais para o exame de Cintilografia de Perfusão Miocárdica estão apresentados nas tabelas 7, 8, 9 e 10, sendo estas diferenciadas por número de dias de duração do protocolo e por modalidade. As atividades estão expressas em miliCurie.

Cintilografia de perfusão miocárdica (protocolo 1 dia) repouso 99mTc-MIBI									
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte				
Mediana	10,00	11,00	7,50	10,00	12,00				
Máximo	27,00	45,00	30,10	15,00	25,00				
Mínimo	6,00	6,30	7,00	7,00	10,00				
1° quartil	10,00	10,00	7,00	9,00	10,00				
NRD (3° quartil)	11,00	15,00	9,50	11,00	25,00				

Tabela 7 - Dados estatísticos para o exame de Cintilografia de Perfusão Miocárdica na fase de repouso (protocolo de 1 dia). Dados em MiliCurie (mCi).

Fonte: Autoria própria (2023).

Tabela 8 - Dados estatísticos para o exame de Cintilografia de Perfusão Miocárdica na fase de estresse (protocolo de 1 dia). Dados em MiliCurie (mCi).

Cintilografia de perfusão miocárdica (protocolo 1 dia) estresse 99mTc-MIBI									
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte				
Mediana	30,00	30,00	22,50	27,25	30,00				
Máximo	45,00	40,00	45,00	45,00	36,00				
Mínimo	8,00	11,00	21,00	11,00	10,00				
1° quartil	27,00	30,00	21,00	24,00	10,00				
NRD (3° quartil)	30,00	30,00	24,00	30,00	33,00				

Cintilografia de perfusão miocárdica (protocolo 2 dias) repouso 99mTc-MIBI					
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
Mediana	15,00	20,00	14,00	19,00	25,00
Máximo	33,00	35,00	30,10	27,50	25,00
Mínimo	7,00	6,50	7,98	10,00	20,00
1° quartil	12,00	15,00	9,50	16,50	20,00
NRD (3° quartil)	20,00	25,00	18,00	20,00	25,00

Tabela 9 - Dados estatísticos para o exame de Cintilografia de Perfusão Miocárdica na fase de repouso (protocolo de 2 dias). Dados em MiliCurie (mCi).

Fonte: Autoria própria (2023).

Tabela 10 - Dados estatísticos para o exame de Cintilografia de Perfusão Miocárdica na fase de estresse (protocolo de 2 dias). Dados em MiliCurie (mCi).

Cintilografia de perfusão miocárdica (protocolo 2 dias) estresse 99mTc-MIBI					
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
Mediana	15,00	23,75	14,00	19,00	25,00
Máximo	35,00	35,00	30,10	27,50	25,00
Mínimo	7,98	6,50	7,98	10,00	20,00
1° quartil	15,00	18,8	13,00	16,50	20,00
NRD (3° quartil)	21,50	25,00	21,88	25,00	25,00

Os dados regionais para o exame de Cintilografia Óssea estão apresentados na tabela 11. As atividades estão expressas em Milicurie.

Cintilografia Óssea 99mTc-MDP					
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
Mediana	25,00	25,00	26,50	27,50	25,00
Máximo	35,00	32,50	30,10	30,00	25,00
Mínimo	5,00	20,00	15,00	16,50	20,00
1° quartil	25	25	20	21	20
NRD (3° quartil)	30,00	27,50	30,00	30,00	25,00

Tabela 11 - Dados estatísticos para o exame de Cintilografia Óssea. Dados em MiliCurie (mCi).

Fonte: Autoria própria (2023).

Os dados regionais para o exame de Cintilografia Renal bem como as duas fases de seu procedimento se encontram descritos nas tabelas 12 e 13. As atividades estão expressas em MiliCurie.

Tabela 12 - Dados estatísticos para o exame de Cintilografia renal dinâmica. Dados em MiliCurie (mCi).

Cintilografia renal dinâmica 99mTc DTPA					
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
Mediana	10,00	10,00	10,00	10,00	10,00
Máximo	20,30	25,00	15,00	25,00	10,00
Mínimo	2,50	5,50	8,00	4,50	8,00
1° quartil	8,00	8,00	9,00	10,00	10,00
NRD (3° quartil)	12,00	15,00	15,00	20,00	10,00

Cintilografia renal estática 99mTc-DMSA					
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
Mediana	5,00	4,50	5,00	5,00	5,00
Máximo	15,00	10,00	6,50	30,00	5,00
Mínimo	2,00	3,00	3,00	3,00	3,00
1° quartil	5,00	4,00	5,00	5,00	3,00
NRD (3° quartil)	5,50	5,00	5,00	7,00	5,00

Tabela 13 - Dados estatísticos para o exame de Cintilografia renal estática. Dados em MiliCurie (mCi).

Fonte: Autoria própria (2023).

Os dados regionais para o exame de PET Oncológico estão representados na tabela 14. As atividades estão expressas em miliCurie. Não foi possível realizar a análise estatística da região norte por não haver número suficiente de participantes para esta categoria.

18F-FDG Oncológico					
Dados Estatísticos	Sudeste	Sul	Centro-oeste	Nordeste	Norte
Mediana	8,05	8,40	8,40	7,00	-
Máximo	10,00	10,50	10,00	11,90	-
Mínimo	5,60	6,30	7,00	6,30	-
1° quartil	9,00	18,00	16,00	7,00	-
NRD (3° quartil)	8,40	8,40	9,63	9,73	-

Tabela 14 - Dados estatísticos para o exame de PET Oncológico.

Fonte: Autoria própria (2023).

Como as amostras não se mostraram com características de uma distribuição normal, a aplicação de um teste não paramétrico foi utilizada. Optou-se pela aplicação do teste de Kruskal-Wallis, já que se deseja avaliar grupos por meio de uma variável quantitativa. Os dados seguem relacionados na tabela 15.

Procedimento	P-Valor
Cintilografia de perfusão miocárdica protocolo 1 dia repouso	0.003
99mTc MIBI	0,000
Cintilografia de perfusão miocárdica protocolo 1 dia estresse	0.518
99mTc MIBI	-,
Cintilografia de perfusão miocárdica protocolo 2 dias repouso	0,003
99mTc	,
Cintilografia de perfusão miocárdica protocolo 2 dias estresse	0,01
99mTc MIBI	
Cintilografia Óssea 99mTc MDP	0,254
Cintilografia renal dinâmica 99mTc DTPA	0,02
Cintilografia renal estática 99mTc DMSA	0,008
18F-FDG Oncológico	0,205

Tabela 15 - Resultados do teste Kruskal- Wallis para comparação dos procedimentos por regiões.

Fonte: Autoria própria (2023).

Considerando que a hipótese inicial, também chamada H(0), é que há diferença da atividade administrada nos exames acima nas mais diferentes regiões, já que o P-Valor foi maior que 0,05. Com isso, pode-se perceber que os exames de cintilografia de perfusão miocárdica com protocolo de 1 dia de estresse 99mTc MIBI, a cintilografia óssea 99mTc-MDP e o 18F-FDG oncológico não apresentaram diferença significativa entre as diferentes regiões, o que não ocorreu com os demais exames que, por sua vez, constataram que a hipótese nula supracitada é verdadeira.

A partir disso, foi necessária a aplicação de um teste Post Hoc para verificação da ocorrência de tais diferenças. Para esse estudo, o JAMOVI sugeriu a utilização do teste DSCF, que realizou a comparação das regiões em pares. O resultado por ser visto nas tabelas 16,17,18,19 e 20 para os procedimentos cintilografia de perfusão miocárdica protocolo 1 dia repouso 99mTc MIBI, cintilografia de perfusão miocárdica protocolo 2 dias repouso 99mTc, cintilografia de perfusão miocárdica

protocolo 2 dias estresse 99mTc MIBI, cintilografia renal dinâmica 99mTc DTPA, cintilografia renal estática 99mTc-DMSA e 18F-FDG oncológico, respectivamente.

Região 1	Região 2	p-Valor
Sudeste	Sul	0.010
Sudeste	Nordeste	0.999
Sudeste	Norte	0.291
Sudeste	Centro-oeste	0.073
Sul	Nordeste	0.061
Sul	Norte	1.000
Sul	Centro-oeste	0.06
Nordeste	Norte	0.336
Nordeste	Centro-oeste	0.294
Norte	Centro-oeste	0.134

Tabela 16 - Teste de DSCF para Cintilografia de perfusão miocárdica protocolo 1 dia repouso 99mTc MIBI.

Região 1	Região 2	p-Valor		
Sudeste	Sul	0.206		
Sudeste	Nordeste	0.991		
Sudeste	Norte	0.717		
Sudeste	Centro-oeste	0.380		
Sul	Nordeste	0.664		
Sul	Norte	1.000		
Sul	Centro-oeste	0.057		
Nordeste	Norte	0.608		
Nordeste	Centro-oeste	0.467		
Norte	Centro-oeste	0.302		
Fonte: Autoria própria (2023).				

Tabela 17 - Teste de DSCF para Cintilografia de perfusão miocárdica - protocolo 2 dias repouso 99mTc MIBI.

Tabela 18 - Teste de DSCF para Cintilografia de perfusão miocárdica - protocolo 2 dias estresse 99mTc MIBI.

Região 1	Região 2	p-Valor
Sudeste	Sul	0.087
Sudeste	Nordeste	0.507
Sudeste	Norte	0.191
Sudeste	Centro-oeste	0.612
Sul	Nordeste	0.950
Sul	Norte	0.985
Sul	Centro-oeste	0.034
Nordeste	Norte	0.472
Nordeste	Centro-oeste	0.202
Norte	Centro-oeste	0.091

Região 1	Região 2	p-Valor
Sudeste	Sul	0.776
Sudeste	Nordeste	0.006
Sudeste	Norte	0.861
Sudeste	Centro-oeste	0.987
Sul	Nordeste	0.119
Sul	Norte	0.882
Sul	Centro-oeste	0.949
Nordeste	Norte	0.306
Nordeste	Centro-oeste	0.051
Norte	Centro-oeste	0.965

Tabela 19 - Teste de DSCF para Cintilografia renal dinâmica 99mTc DTPA.

Fonte: Autoria própria (2023).

Tabela 20 - Teste de DSCF	para cintilografia renal	estática 99mTc-DMSA.
---------------------------	--------------------------	----------------------

Região 1	Região 2	p-Valor
Sudeste	Sul	1.000
Sudeste	Nordeste	0.018
Sudeste	Norte	0.300
Sudeste	Centro-oeste	0.745
Sul	Nordeste	0.150
Sul	Norte	0.628
Sul	Centro-oeste	0.999
Nordeste	Norte	0.134
Nordeste	Centro-oeste	0.049
Norte	Centro-oeste	0.279

Observa-se através do teste de Post-Hoc que para o exame de cintilografia Renal com DMSA as diferenças ocorreram entre as regiões sudeste e nordeste e nordeste e centro-oeste. Os resultados entre essas diferenças encontram-se no gráfico 7.

Gráfico 7 - Teste de DSCF- Cintilografia de Renal DMSA.

Fonte: Autoria própria (2023).

Observa-se que a região nordeste administra uma atividade maior em seus pacientes em relação as demais regiões.

No exame de Cintilografia de Perfusão do miocárdio protocolo de 1 dia na fase de repouso, nota-se uma diferença entre as regiões Sul e Sudeste, como mostrado no gráfico 8. Tal análise demonstrou que a região Sul injeta mais atividade que a região sudeste no exame em questão.

Fonte: Autoria própria (2023).

O exame de Cintilografia de Perfusão do Miocárdio Protocolo 2 dias na fase de repouso mostrou uma diferença significativa nas regiões Sul e Centro-Oeste, como mostrado no gráfico 9.

Gráfico 9 - Teste de DSCF– Cintilografia de Perfusão do Miocárdio Protocolo 2 dias na fase de repouso.

O gráfico acima revela que a região sul administra uma atividade maior nos seus pacientes, quando comparado com a região Centro-Oeste.

Em relação ao procedimento de Cintilografia de Perfusão do Miocárdio Protocolo 2 dias Stress nota-se uma variação das atividades administradas entre as regiões Sul e Centro-Oeste, como demonstrado no gráfico 10. Tal análise revela que a região Sul administra uma atividade maior que a região Centro-Oeste.

Gráfico 10 - Teste de DSCF– Cintilografia de Perfusão do Miocárdio Protocolo 2 dias Stress.

Fonte: Autoria própria (2023).

Fonte: Autoria própria (2023).

Em relação ao exame de Cintilografia de Renal DTPA, temos uma variação nos valores das atividades administradas entre as regiões sudeste e nordeste e nordeste e sudeste, como mostrado no gráfico 11. Tal análise demonstra que a região nordeste administra uma atividade maior que as demais outras regiões.

Gráfico 11 - Teste de DSCF– Cintilografia de Renal DTPA.

Fonte: Autoria própria (2023).

Para uma visualização geral do cenário dos NRDs atuais comparativamente com o cenário internacional e do estudo de 2015, foi elaborada a tabela 21, que demonstra os NRD obtidos em 2023, 2015, pela Agência Internacional de Energia Atômica apresentado na publicação 115 do *Basic Safety Standards* (International Atomic Energy Agency,1996), pela Sociedade Norte-Americana de Medicina e Imagem molecular (SNMMI, 2015), pela Associação Europeia de Medicina Nuclear (EANMMI, 2015) e pelo estudo em 2015 realizado por Willegaignon et al (WILLEGAIGNON, J., 2015). A célula com o asterisco indica que a atividade administrada nas duas etapas de cintilografia de perfusão miocárdica (protocolo 1 dia) não deve superar o valor total.

Procedimento	NRD 2023	NRD 2015	NRD BSS115	NRD SNMMI	NRD EANMMI
Cintilografia renal dinâmica 99mTc DTPA	12,00	12,10	9,50	1,00 — 10,00	5,40
Cintilografia óssea 99mTc MDP	30,00	30,00	16,20	20,00 – 30,00	13,50
Cintilografia renal estática 99mTc DMSA	5,00	5,00	4,30	0,30 – 3,00	2,60
Cintilografia das paratireoides 99mTc MIBI	23,13	20,00	-	5,00 – 25,00	5,40 – 20,00
Cintilografia pulmonar de perfusão 99mTc MAA	9,00	9,00	2,70	1,10 - 4,10	2,10
Cintilografia da tireoide 99mTc pertecnetato	15,00	12,00	5,40	2,00 – 10,00	2,20
Cintilografia de Perfusão Cerebral (SPECT cerebral) 99mTc ECD	30,00	32,50	-	10,00 — 30,00	12,30
Cintilografia de glândulas salivares 99mTc pertecnetato	15,00	15,00	1,10	5,00 — 10,00	5,00 — 10,00
Pesquisa de refluxo gastro-esofágico 99mTc Fitato/Estanho	2,00	1,00	1,10	0,50 – 1,00	1,10
Cintilografia para pesquisa de sangramento gastrointestinal 99mTc Hemácias Marcadas	25,00	25,00	10,80	20,00 – 30,00	15,00 – 30,00
Cintilografia de perfusão miocárdica (protocolo 1 dia) repouso 99mTc-MIBI	12,00	12,00	21,60	<40.00*	10,80
Cintilografia de perfusão miocárdica (protocolo 1 dia) estresse 99mTc MIBI	30,00	30,00	21,60	,	32,40

Tabela 21 - Comparação entre os NRD nacional em 2022 e 2015 com o cenário internacional.

(continua)

Procedimente	NRD	NRD	NRD	NRD	NRD
Procedimento	2023	2015	BSS115	SNMMI	EANMMI
Cintilografia de perfusão miocárdica (protocolo 2 dias) repouso 99mTc MIBI	20,00	23,50	21,60	30,00	16,20
Cintilografia de perfusão niocárdica (protocolo 2 dias) estresse 99mTc MIBI	24,25	25,00	21,60	30,00	16,20
Cintilografia de fígado e rias biliares 99mTc DISIDA	8,50	10,00	4,10	3,00 - 5,00	4,10
Pesquisa de esvaziamento gástrico – sólidos 99mTc-Fitato	2,00	1,60	0,30	0,50 - 2,00	-
Pesquisa de esvaziamento gástrico – íquidos 99mTc-Fitato	2,00	1,00	0,30	0,50 - 2,00	-
Cintilografia do fígado e oaço 99mTc-Fitato	10,00	10,00	2,20	3,00 - 6,00	-
8F-FDG oncológico	8,43	10,00	-	10,00 – 20,00	10,00
8F-FDG neurológico	6,50	9,50	-	5,00 — 20,00	5,40
18F-NaF	8,40	10,00	-	5,00 — 10,00	4,10
Cintilografia de corpo nteiro para nfecção/inflamação 67Ga-Citrato	5,00	5,00	8,10	5,00 — 10,00	2,20
Cintilografia de corpo nteiro para tumores 67Ga-Citrato	8,00	7,00	8,10	5,00 — 10,00	2,20
Cintilografia de corpo nteiro com iodo (PCI) 131I-Nal	5,00	5,00	10,80	1,00 - 5,00	0,30 - 5,00

Em relação aos exames de miocárdio, as tabelas 22 e 23 apresentam, respectivamente, os resultados para as gamas câmaras convencionais e as dedicadas para exame do miocárdio.

Tabela 22 - Dados estatísticos dos exames de cintilografia de perfusão miocárdica para as gamas câmaras convencionais.

(continua)

		Desvie			NRD
Média	Mediana	Desvio	Máximo	Mínimo	(3°
		Faulau			Quartil)
11,55	10,00	6,15	45,00	6,00	12,00
27,27	27,50	7,23	75,00	8,00	30,00
17,35	17,50	6,90	35,00	6,50	24,25
16,48	16,00	6,66	35,00	6,50	20,00
	Média 11,55 27,27 17,35 16,48	Média Mediana 11,55 10,00 27,27 27,50 17,35 17,50 16,48 16,00	MédiaMedianaDesvio Padrão11,5510,006,1527,2727,507,2317,3517,506,9016,4816,006,66	MédiaMedianaDesvio PadrãoMáximo11,5510,006,1545,0027,2727,507,2375,0017,3517,506,9035,0016,4816,006,6635,00	MédiaMedianaDesvio PadrãoMáximoMínimo11,5510,006,1545,006,0027,2727,507,2375,008,0017,3517,506,9035,006,5016,4816,006,6635,006,50

Procedimentos	Média	Mediana	Desvio Padrão	Máximo	Mínimo	NRD (3° Quartil)
Cintilografia de perfusão miocárdica - protocolo 1 dia repouso 99mTc MIBI	8,38	9,00	1,86	11,00	6,00	10,00
Cintilografia de perfusão miocárdica - protocolo 1 dia estresse 99mTc MIBI	23,61	27,00	7,56	33,00	10,00	30,00
Cintilografia de perfusão miocárdica - protocolo 2 dias repouso 99mTc	15,21	15,00	4,54	22,50	10,00	20,00
Cintilografia de perfusão miocárdica - protocolo 2 dias estresse 99mTc MIBI	14,21	15,00	5,16	21,5	9,00	20,00

Tabela 23 - Dados estatísticos dos procedimentos de cintilografia de perfusão do miocárdio para gamas câmaras dedicadas.

Fonte: Autoria própria (2023).

Os resultados do teste de normalidade Shapiro-Wilk estão evidenciados na tabela 24.

Dresedimente	P-Valor P-Valor N-CZT Convencional CZT			N-	
Procedimento			N-CZI	Convencional	
Cintilografia de perfusão					
miocárdica - protocolo 1	< 0,01	0,256	9	217	
dia repouso 99mTc MIBI					
Cintilografia de perfusão					
miocárdica - protocolo 1	< 0,01	0,390	9	217	
dia estresse 99mTc MIBI					
Cintilografia de perfusão					
miocárdica - protocolo 2	< 0,01	0,204	7	206	
dias repouso 99mTc					
Cintilografia de perfusão					
miocárdica - protocolo 2	< 0,01	0,416	7	204	
dias estresse 99mTc MIBI					

Tabela 24 - Resultados do teste de normalidade de Shapiro-Wilk.

Fonte: Autoria própria (2023).

Considerando que a hipótese inicial H (0) é que a amostra seja normal caso o P-Valor seja maior que 0,05, o resultado obtido indica que a amostra rejeita a hipótese inicial, indicando que o melhor teste de comparação é o não paramétrico. Neste caso, foi utilizado o teste Mann-Whithney. A tabela 25, representa os resultados do teste de Mann- Whitney.

Tabela 25 - Resultados do teste de Mann-Whitney.

(continua)

Procedimento	P-Valor
Cintilografia de perfusão miocárdica - protocolo 1 dia	0.020
repouso 99mTc MIBI	0,020
Cintilografia de perfusão miocárdica - protocolo 1 dia	0 125
estresse 99mTc MIBI	0,120

Cintilografia de perfusão miocárdica - protocolo 2 dias	0 171	
repouso 99mTc	0,171	
Cintilografia de perfusão miocárdica - protocolo 2 dias	0.059	
estresse 99mTc MIBI	0,000	
6 CONCLUSÃO

Tendo em vista a análise dos dados coletados, pode-se concluir que este trabalho obteve as medidas dos valores de NRD no ano de 2022. Tal resultado poderá servir de base para um método de otimização da prática em medicina nuclear no Brasil a medida em que haja a comparação dos valores de NRD com os valores utilizados nos procedimentos em cada clínica ou hospital.

Em comparação com os valores internacionais, os NRD do presente trabalho continuam discrepantes. Mesmo com a introdução de novos equipamentos e com o parque tecnológico brasileiro se aprimorando a cada ano, o Brasil ainda continua com os mesmos protocolos de administração de atividades em pacientes.

Com relação aos procedimentos de miocárdio que utilizam gamas câmaras dedicadas, não se observaram diminuições substanciais nas atividades administradas, o que sugere a necessidade da implantação e continuidade de programas de educação para médicos nucleares no Brasil, a fim de que as atividades administradas sejam diminuídas.

Observou-se que a adesão no presente trabalho foi maior do que a do estudo realizado 2015. No entanto, ainda há a necessidade da implementação de políticas de incentivo para que o próximo levantamento dos níveis de referência em diagnóstico tenha maior aderência.

REFERÊNCIAS BIBLIOGRÁFICAS

ADRIAN COMMITTEE. Radiological Hazards to Patients. Second Report of the Committee. London, 1960.

ARAUJO, E. B.; LAVINAS, T.; COLTURATO, M.T.; MENAGATTI, J. Garantia da qualidade aplicada à produção de radiofármacos. Rev.Bras. Cienc. Farm., v. 44, n. 1 p. 1-12, 2008.

ATTIX, F. Introduction to Radiological Physics and Radiation Dosimetry 1st Edition. [S.I.]: Wiley-VCH; 1 edition (January 8, 1991), 1991. 628 p.

CAMPOS, R. F. Estudo de biodistribuição de radiofármaco marcado com 99mTc pelo método invasivo e não invasivo utilizando o micro PET/SPECT/CT. Orientador: Elaine Bortoleti de Araújo. 2020. 95 f. Dissertação (Mestrado em Tecnologia Nuclear) - Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP, São Paulo.

CARDOSO, E. de M. Apostila educativa energia nuclear e suas aplicações. 3. ed. Rio de Janeiro: Comissão Nacional de Energia Nuclear, 2012. Disponível em: https://museunuclear.com/wp-content/uploads/2022/08/apostila-educativaaplicacoes-Nucleares.pdf . Acesso em: 11/01/2023.

CHERRY, S. R.; SORENSON, J. A.; PHELPS, M. E. Physics in nuclear medicine. 4rd ed. Philadelphia: Sanders, 2012.

COMISSAO NACIONAL DE ENERGIA NUCLEAR (Rio de Janeiro). Instalações Autorizadas. Medicina Nuclear. 2022. Disponível em: https://appasp2019.cnen.gov.br/seguranca/cons-ent-prof/lst-entidades-autcert.asp?p_ent=42&d=Medicina%20Nucleard=Medicina%20Nuclear. Acesso em: 02 de maio de 2022.

COUNCIL DIRECTIVE 97/43. Euratom On Health Protection Of Individuals Against The Dangers Of Ionizing Radiation In Relation To Medical Exposure, And Repealing. Directive 84/466/Euratom. Official Journal of the European Communities. 180: 22 – 7;1997.

EUROPEAN PHARMACOPEIA. 9 ed., Strasbourg: EDQM, 2017.

EISBERG, R. M.; RESNICK, R. Física quântica: átomos, emissão, sólidos, núcleos e partícula. Rio de Janeiro: Campus, c1979 928 p.

European Association of Nuclear Medicine and Molecular Imaging - EANMMI. Guidelines. Disponível em: [http://www.eanm.org/publications/guidelines/index.php?navId=37]. Acessado em 22 maio 2015.

EANM, 2021. EUROPEAN ASSOCIATION OF NUCLEAR MEDICINE. Dosage Card [internet]. Vienna: European Association of Nuclear Medicine, 2021. Disponível em: . Acesso em: 09 JUL. 2023.

FARMACOPEIA BRASILEIRA. 5. ed. Brasília: Agência Nacional de Vigilância Sanitária, 2010.

ICRP - International Commission On Radiological Protection. Radiological Protection And Safety In Medicine. ICRP Publication 73. Annals of the ICRP 26, No. 2, 1996.

International Atomic Energy Agency. International Basic Safety Standards for protection against ionizing radiation and for the safety of radiation sources. Basic Safety Series No. 115. Vienna: International Atomic Energy Agency;1996.

MACCIA, C., MOORES, B. M. and WALL, B. F. The 1991 CEC Trial on Quality Criteria for Diagnostic Radiographic Images: Detailed Results and Findings. EUR 16635 (Luxembourg: EC) (1996).

Ministério da Saúde. Banco de dados do Sistema Único de Saúde-DATASUS. Disponível em http://www.datasus.gov.br. Acessado em 20 de fevereiro de 2023.

OKUNO, E.; YOSHIMURA, E. M. Física das radiações. reimpr. São Paulo: Oficina de Textos, 2014. 296 p. ISBN 978-85-7975-005-2.

POWSNER, R., POWSNER E. Essentials Nuclear Medicine Physics, 2nd Ed. Backwell Publishuing, 2006.

R core Team (2021). R Language and enviralment for statistical computing. (Version 4.1) [Computer Software]. Retrieved from https://cran-r-project.org. (R packpages retrieved from MRAN snapshot 2022-01-01).

RIBEIRO, J. C. de S. Avaliação de dose e estabelecimento de níveis de referência em atividade para a medicina nuclear. 2017. 121 p. Dissertação (Mestrado), Instituto de Radioproteção e Dosimetria, Rio de Janeiro, 2017.

SOCIEDADE BRASILEIRA DE MEDICINA NUCLEAR (São Paulo). Comunicação. Conheça a Medicina Nuclear. 2022. Disponível em: https://sbmn.org.br/comunicacao/conheca-a-medicina-nuclear/ . Acesso em: 02 maio 2022.

The Jamovi Project (2022). Jamovi. (Version) [Computer Software]. Retrieved from https://www.jamovi.org.

UNSCEAR, S, Effects and Risks of Ionizing Radiation, Report of the United Nations Scientific Committees on the Effects of Atomic Radiations, Annexes, United Nations Publications - New York, 2008.

UNSCEAR, 2017. UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION. Medical Exposure. UNSCEAR's Global Survey of Radiation Exposure. 2017. Disponível em: . Acesso em: 21 abr. 2021.

VAÑÓ, E., MILLER, D. L., MARTIN, C. J., et al. ICRP Publication 135: Diagnostic Reference Levels in Medical Imaging. Annals of the ICRP. 2017;46(1):1-144. doi:10.1177/0146645317717209.

VITAL, K. D., LIMA, W. G., PESSOA, R. M., FERNANDES, S. O., & CARDOSO, V. N. (2019). Radiofármacos e suas aplicações. Brazilian Journal of Health and Pharmacy, 1(2), 69–79.

WALL, B. F.; SHRIMPTON, P. C. The historical development of reference doses in diagnostic radiology. Radiation Protection Dosimetry, v. 80, n. 1-3, p. 15-20, 1998.

WILLEGAIGNON, J. et al. Atividades de radioisótopos administradas em medicina nuclear e proposta de nível de referência em diagnóstico (DRL) para pacientes adultos e pediátricos no Brasil. ALASBIMN Journal. 2015.

YOSHIMURA, E. M. Física das Radiações: interação da radiação com a matéria. Revista Brasileira de Física Médica, [S. I.], v. 3, n. 1, p. 57–67, 2015. DOI: 10.29384/rbfm.2009.v3.n1.p57-67. Disponível em: https://www.rbfm.org.br/rbfm/article/view/35. Acesso em: 13 maio. 2023.